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Abstract
The effective medium approximation (EMA) is derived to investigate the
effective linear and nonlinear responses of two-component composites in which
one component is nonspherical and distributed in shape. Both components
with the volume fractions p and q are assumed to obey a current–field J–E

relation of the form J = σiE + χi |E|2E, where σi and χi are the linear
conductivity and nonlinear response of the component i (i = 1, 2) respec-
tively. As the percolation threshold pc (or qc) is approached from above (or
below), the effective linear conductivity σe and effective nonlinear response χe

behave as σe ∼ [p− pc(�)]t and χe ∼ [p− pc(�)]t2 in the conductor/insulator
(C/I) limit, and σe ∼ [qc(�) − q]−s and χe ∼ [qc(�) − q]−s2 in the supercon-
ductor/conductor (S/C) limit, where the exponents are found to be t = s = 1
and t2 = s2 = 2, independent of the shape variance parameter �, and pc(�)

(or qc(�)) is a monotonically decreasing (or increasing) function with �. For
a finite-conductivity ratio h = σ1/σ2, numerical results show that σe may
be increased or decreased with increasing �, dependent on whether the first
component is a good or a poor conductor, while χe can exhibit a monotonic in-
crease, monotonic decrease and nonmonotonic behaviour. Therefore, χe can be
greatly enhanced by the adjustment of the shape variance parameter,and thereby
provides an alternative way to achieve large enhancement of effective nonlinear
response. The results of EMA with shape distribution are also compared with
exact solutions in the dilute limit and reasonable agreement is found.

1. Introduction

The linear and nonlinear responses of inhomogeneous media have received much attention in
recent years because of their potential applications in engineering and technology [1, 2]. The
simultaneous presence of both inhomogeneity and nonlinearity in a system is an interesting
and important problem [3]. A weakly nonlinear composite consists of one material with a
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nonlinear current–field characteristic of the form J = σ1E + χ1|E|2E and the other material
with a linear or nonlinear response. One of the basic questions concerning such a random
system is the calculation of the effective linear conductivity σe and the effective nonlinear
response χe.

To calculate the effective linear conductivity, two important theories such as the Maxwell-
Garnett approximation [4] and the Bruggeman effective medium approximation (EMA) [5]
can be adopted. As we know, the derivations of both approximations were based on the
assumption that the granular inclusions are spherical in shape. Later, the generalizations of
these two approximations for all ellipsoidal inclusions having a fixed shape were done in
various works [6–11].

In order to investigate the effective nonlinear response, the scientists developed the
T -matrix method [12], decoupling approximation [13], perturbative method [14], numerical
simulations in random resistor network [15] and so on [16–18]. All of these methods employed
the spherical or cylindrical shape concept.

In a realistic composite system, the granular inclusions are usually nonspherical and
even shape-distributed. In [19] and [20], we derived two different Maxwell-Garnett type
approximations to investigate how the shape, and shape distribution of the granular inclusions
affect the optical nonlinearity enhancement, when the alternating-current (ac) electric field
was applied. As the two-component materials were considered to have asymmetrical
microstructures (the granular inclusions of one component are embedded in the host medium),
no percolation effect takes place. In this paper, we would like to investigate the effective linear
and nonlinear responses of the conducting composite media of zero frequency in which two
nonlinear components with shape distribution are randomly mixed. For simplicity, we assume
that one component is spherical with the volume fraction q , while the other component with the
volume fraction p (note that p+q = 1) is ellipsoidal in shape with a shape distribution function
characterized by f (Lx , L y) = 2/�2θ(Lx − 1/3 + �/3)θ(L y − 1/3 + �/3)θ(2/3 + �/3 −
Lx − L y), where θ(· · ·) is the Heaviside function, Lx,(y) is the depolarization factor along the
x(y)-symmetric axis and � is the shape variance parameter. This kind of distribution function
has already been applied to study the effective absorption and scattering cross section [21, 22]
for a system of small non-interacting ellipsoids distributed in shape. Here, based on the self-
consistent condition of zero net polarization, we derive EMA by including the shape distribution
in the calculation. In conjunction with the decoupling approximation [13], we are able to
investigate the effects of shape variance parameter � on the percolation thresholds pc and
qc, the critical exponents of σe and χe near the percolation thresholds in conductor/insulator
(C/I) and superconductor/conductor (S/C) limits. Furthermore, for more realistic composites
in which both components have finite linear conductivities, the effective linear conductivity
and nonlinear response are also numerically examined.

Our paper is organized as follows. In section 2, EMA is derived by taking into account the
shape distribution of components, and the effective nonlinear response is then solved within
the decoupling approximation. In section 3, two important cases including C/I and S/C limits
are carefully examined. In section 4, the effects of shape variance parameter � on the effective
linear and nonlinear responses are numerically calculated. In section 5, our theoretical results
are compared with exact solutions. Finally, a summary of our results and discussions will be
given in section 6.

2. Effective medium approximation with shape distribution (SDEMA)

We consider a two-constituent, three-dimensional granular composite material, in which the
ellipsoidal component 1 with volume fraction p and the spherical component 2 with volume
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fraction q = 1 − p are randomly distributed. Both components are assumed to be nonlinear
and obey a current–field (J–E) characteristic of the form

J = σiE + χi |E|2E (i = 1, 2), (1)

where σi is the linear conductivity and χi is the nonlinear response of the i th component. Due
to the weak nonlinearity term in equation (1), the effective linear conductivity σe and nonlinear
response χe of the whole system can be defined as follows:

〈J〉 = σe〈E〉 + χe〈|E|2〉〈E〉, (2)

where 〈J〉 and 〈E〉 ≡ E0 represent the spatial average of the current density and the electric
field.

In order to construct the EMA, let us consider the embeddings of both component 1 and 2
in the composite media, replaced by a fictitious homogeneous one with conductivity equal to
the effective conductivity σe [23]. The polarization factor produced in the granular inclusions
made of component i with σi can be written as

Pi = σi − σe

3

[
1

Lxσi + (1 − Lx)σe
+

1

L yσi + (1 − L y)σe
+

1

Lzσi + (1 − Lz)σe

]
, (3)

where L j is the depolarization factor of an ellipsoid along three-symmetric axes and can be
used to describe the shape of the ellipsoids [24]. Note that the sum rule Lx + L y + Lz = 1 must
be satisfied.

The effective linear conductivity σe can then be determined by imposing the consistency
requirement that the arithmetic average of the polarization over different types of granular
inclusions must vanish, i.e.

pP1 + q P2 = 0. (4)

When both components are perfectly spherical in shape (i.e. Lx = L y = Lz = 1/3),
equation (4) reduces to

p
σ1 − σe

σ1 + 2σe
+ (1 − p)

σ2 − σe

σ2 + 2σe
= 0. (5)

Equation (5) is a quadratic equation for σe and is known as the original EMA [5].
When granular inclusions made of component 1 are randomly oriented ellipsoids and

those of component 2 are spherical in shape, from equation (4) we obtain

p
1

3

3∑
j=1

σ1 − σe

σe + L j (σ1 − σe)
+ 3(1 − p)

σ2 − σe

σ2 + 2σe
= 0, (6)

which is an effective medium approximation with dipole–dipole interaction (EMADD) in [8].
For an assembly of component 1 having different ellipsoidal shapes, P1 should take the

form

P1 = σ1 − σe

3

∫ ∫ [
1

Lxσ1 + (1 − Lx)σe
+

1

L yσ1 + (1 − L y)σe

+
1

(1 − Lx − L y)σ1 + (Lx + L y)σe

]
f (Lx , L y) dLx dL y, (7)

where f (Lx , L y) is the distribution function of the depolarization factor, which can,
in principle, be used to describe the shape distribution.

Here we assume the shape distribution function to be [21, 22]

f (Lx , L y) = Cθ

(
Lx − 1

3
+

�

3

)
θ

(
L y − 1

3
+

�

3

)
θ

(
2

3
+

�

3
− Lx − L y

)
, (8)



4400 L Gao and Z Li

where C ≡ 2/�2 is the normalized constant and � is the shape variance parameter of the
granular inclusions made of component 1, which defines both the domain of nonzero values
and the half-width of the f (Lx, L y) function. Actually, � can change from zero to unity.
Physically, for � = 0, all granular inclusions are spherical (L j = 1/3 for j = 1, 3); for
� = 1, all possible ellipsoidal shapes are equiprobable [20].

Introducing equation (8) into (7) leads to

P1

(
σe

σ1

)
= 2

�2

[(
σe

σ1 − σe
+

1 + 2�

3

)
ln

(
σe/(σ1 − σe) + (1 + 2�)/3

σe/(σ1 − σe) + (1 − �)/3

)
− �

]
. (9)

As � → 0, P1(σe/σ1) in equation (9) is nothing but 3 p(σ1 − σe)/(σ1 + 2σe).
Equation (9) admits the following asymptotic behaviour:

P1(x) =




2

�2

[
1 + 2�

3
ln

(
1 + 2�

1 − �

)
− �

]
+

2

�2

[
ln

(
1 + 2�

1 − �

)
− 3�

1 − �

]
x

x � 1
2

�2

[
2(� − 1)

3
ln

(
2 − 2�

2 + �

)
− �

]
− 2

�2

[
ln

(
2 − 2�

2 + �

)
+

3�

2 + �

]/
x

x � 1.

(10)

Thus, the self-consistency equation becomes

2 p

�2

[(
σe

σ1 − σe
+

1 + 2�

3

)
ln

(
σe/(σ1 − σe) + (1 + 2�)/3

σe/(σ1 − σe) + (1 − �)/3

)
− �

]
+ 3q

σ2 − σe

σ2 + 2σe
= 0. (11)

Equation (11) is a linear EMA with shape distribution, which allows us to estimate the effective
linear conductivity of the random mixture in which the first component possesses the shape
distribution form, described by equation (8).

Within the mean field approximation [13], the effective nonlinear response χe of the
two-component random composite media can be expressed as

χeE
4
0 = pχ1〈E4〉1 + qχ2〈E4〉2 ≈ pχ1〈E2〉2

1 + qχ2〈E2〉2
2. (12)

In the above equation, the decoupling technique 〈E4〉i ≈ 〈E2〉2
i has been adopted.

It is well known that 〈E2〉i can be expressed as

〈E2〉1 = 1

p

∂σe

∂σ1
E2

0, and 〈E2〉2 = 1

q

∂σe

∂σ2
E2

0 . (13)

Equation (13) follows from an established formula in a linear random composite giving σe in
terms of the local fields:

σe = pσ1
〈E〉2

1

E2
0

+ (1 − p)σ2
〈E2〉2

E2
0

. (14)

Substituting equation (13) into (12), we have

χe = χ1

p

(
∂σe

∂σ1

)2

+
χ2

q

(
∂σe

∂σ2

)2

. (15)

With equation (10), ∂σe/∂σ1 and ∂σe/∂σ2 can be obtained from{
ln

[
σe/(σ1 − σe) + (1 + 2�)/3

σe/(σ1 − σe) + (1 − �)/3

]
− �

σe/(σ1 − σe) + (1 − �)/3

}

× 2 p

�2

[
∂σe/∂σ1 · σ1 − σe

(σ1 − σe)2

]
− 9qσ2∂σe/∂σ1

(σ2 + 2σe)2
= 0 (16)
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{
ln

[
σe/(σ1 − σe) + (1 + 2�)/3

σe/(σ1 − σe) + (1 − �)/3

]
− �

σe/(σ1 − σe) + (1 − �)/3

}

× 2 p

�2

[
∂σe/∂σ2 · σ1

(σ1 − σe)2

]
+

9q(σe − ∂σe/∂σ2 · σ2)

(σ2 + 2σe)2
= 0. (17)

So far, we have formulated an effective medium approximation with shape distribution
(SDEMA) made of equations (11) and (15)–(17) to investigate the effective linear conductivity
σe and nonlinear response χe of the two-component nonlinear composites.

3. Nonlinear conductor/insulator (C/I) and superconductor/nonlinear conductor (S/C)
limits

In this section, we discuss two important limits, i.e. the conductor/insulator (C/I) and
superconductor/conductor (S/C) cases. In these limits, percolation phenomena will take place,
and thus it is necessary to study the percolation thresholds for both components 1 and 2 first.

In the C/I limit, where σ2 = 0 and χ2 = 0, we identify the percolation threshold of
component 1 below which the effective conductivity becomes zero and have [23]

pc(�) ≡ P2
(

σe
σ2

→ ∞)
P2

(
σe
σ2

→ ∞) − P1
(

σe
σ1

→ 0
) = 3

3 + 4/�2
[
(1 + 2�)/3 ln

(
(1+2�)

(1−�)

) − �
] . (18)

Clearly, the percolation threshold pc(�) is dependent on the shape variance. That is to say,
pc is determined by all possible depolarization factors in the range [1/3 −�, 1/3 + �]. In this
connection, for a two-phase medium composed of randomly oriented spheroids with a fixed
principal depolarization factor L and a spherical insulating component [8], the percolation
threshold pc(L) admits the form

pc(L) = 9L(1 − L)

−9L2 + 15L + 2
. (19)

Note that equation (19) yields a L-dependent percolation threshold, which is quite different
from equation (18).

As the percolation threshold pc(�) is approached from above, we expect σe � σ1.
By substituting equation (10) into (4), the effective linear response is found to be

σe = p − pc(�)

2/�2[3�/(1 − �) − ln((1 + 2�)/(1 − �))]pc(�)
σ1

∼ σ1[p − pc(�)]t = σ1[p − pc(�)]1. (20)

Introducing equation (20) into (15), we have

χe ∼ [p − pc(�)]t2 = [p − pc(�)]2. (21)

In the S/C limit, where σ2 = ∞, we identify the percolation threshold of the
superconducting component 2,above which the whole composite will become superconducting
and have

qc(�) = P1(
σe
σ1

→ ∞)

P1(
σe
σ1

→ ∞) − P2(
σe
σ2

→ 0)

= 2/�2{� + 2(1 − �)/3 ln[2(1 − �)/(2 + �)]}
3 + 2/�2{� + 2(1 − �)/3 ln[2(1 − �)/(2 + �)]} . (22)

Again, the percolation threshold qc is dependent on �.
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Figure 1. The percolation thresholds pc and qc as a function of �.

Similarly, as the percolation threshold qc is approached from below, σe and χe diverge as

σe ∼ σ1[qc(�) − q]−s = σ1[qc(�) − q]−1

and
χe ∼ [qc(�) − q]−s2 = [qc(�) − q]−2.

(23)

Thus within SDEMA, for a three-dimensional composite system, although pc and qc are
found to be dependent on �, the critical exponents t = s = 1 and t2 = s2 = 2, which describe
the vanishing or divergence of σe and χe near the percolation thresholds,are indeed independent
of �. In fact, in the two-dimensional case, we have pc(�) = 2�/{2� + ln[(1 + �)/(1 − �)]}
and qc(�) = ln[(1 + �)/(1 − �)]/{2� + ln[(1 + �)/(1 − �)]}, while the critical exponents
still remain unchanged. It is well known that EMA may give the critical behaviour near the
percolation threshold qualitatively, but usually predicts the incorrect exponents, because the
full complexity of the spatial fluctuations of the local field is not taken into account [25, 26].

In figure 1, we plot the percolation thresholds pc and qc as a function of � in the three-
dimensional case.

It is evident that pc is a monotonically decreasing function of �, but qc increases with
increasing �. Such dependences on � can be easily understood as follows: the depolarization
factor of component 1 along the j -symmetric axis can take a value from 1/3 − �/3 � L j �
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Figure 2. The effective linear conductivity σe/σ1 as a function of the volume fraction p for various
� and h = σ1/σ2. (a) h = 10, (b) h = 500, (c) h = 0.1 and (d) h = 0.002.

1/3 + �/3. Thus there is the possibility for the first component 1 to be needle-like along the
applied field and it is easy to form an infinite connected cluster throughout the whole composite,
resulting in a small percolation threshold pc(�) with increasing �; on the other hand, there is
also the possibility for the first component’s shape to be plate-like in shape, which keeps the
superconducting phase (the second component) from connecting one with another, leading to
a large percolation threshold for component 2.

4. Numerical results for finite ratio of conductivity σ1/σ2

We are now in a position to study the effective linear and nonlinear responses of the composite
media with finite ratio of conductivity. The dependence of the effective linear and nonlinear
responses on the shape variance parameter � are examined numerically.

Figure 2 shows the effective linear conductivity σe as a function of the volume fraction p
for various � and different conductivity ratio h = σ1/σ2. When component 1, which possesses
the shape distribution, is a good conductor and component 2 with spherical shape is a poor
conductor, i.e. h > 0, the effective linear conductivity σe increases with increasing �, and
such a tendency is clearly observed, especially for larger h (see figure 2(b)). In contrast, when
h < 1 (i.e. the second component is a good conductor), increasing � yields decreasing σe,
and the smaller h is, the more distinct the effect becomes. For larger volume fraction p > 0.7,
the prevailing component is component 2, whose shape is spherical and is independent of �.
Thus the change in � does not affect σe significantly, as predicted. From figure 2, we conclude
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Figure 3. The effective nonlinear response χe/χ1 of the composites in which χ2 = 0 as a function
of p. Other parameters are the same as in figure 2.

that the effective linear conductivity σe predicted by our SDEMA is, in most cases, slightly
different from the original EMA [5].

Then, we speculate on how the shape variance parameter � affects the effective nonlinear
response.

Figure 3 show the results for effective nonlinear response χe/χ1 of the composite media
in which only component 1 is assumed to be nonlinear (i.e. χ2 = 0).

When the conductivity ratio h is larger than 1, χe increases monotonically with increasing
p for all given �, which is similar to that reported in [15, 27]. For larger h, say h = 500 (see
figure 3(b)), it was suggested that the rapid increase of χe/χ1 around 0.2 < p < 0.4 reflects the
percolation threshold above which component 1 forms an infinite cluster throughout the whole
composite [15, 28]. We also find that, for h > 1, increasing � always leads to increasing χe, in
accord with that observed for σe. This is a new result. In this situation, however, the effective
nonlinear response is still less than that of the component, which limits possible applications.

The enhancement of χe can be found in the composite in which nonlinear component 1
has the poor conductivity σ1 < σ2 (see figures 3(c) and (d)). In this case, χe/χ1 can be
enhanced and exhibits a peak. Such phenomena have been previously observed in numerical
calculations on a two-dimensional random resistor network [15, 27, 28] and in analytical
scaling calculations [27]. The peak, arising near the percolation threshold of component
2, demonstrates the fact that χe diverges as qc is approached in S/C random mixtures.
Interestingly, as � increases, the effective nonlinearity increases monotonically for h = 0.1;
while for h = 0.002, χe can take on quite different behaviours, dependent on the volume
fractions. Thus, the adjustment of the shape variance � in this case is useful to achieve a
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Figure 4. χe/χ2 as a function of p. Other parameters are the same as in figure 2.

large effective nonlinear response near the percolation threshold. Such an enhancement is
analysed to be a geometrical effect. Near qc, there exist some disconnected regions composed
of conductors with good linear conductivity σ2, separated by regions of nonlinear conductors
with poor linear conductivity σ1. For this restricted geometry, the current must pass through the
nonlinear conductors with poor linear conductivity, leading to the enhancement in the effective
nonlinear response [15]. Meanwhile, as the regions of the nonlinear conductors are related to
the shape variance parameter, the effective nonlinear response depends on � accordingly.

Next, we investigate χe in the composite media in which the spherical component 2 is
weakly nonlinear and the component 1 is linear. The results are shown in figure 4. Generally
(see figures 4(a), (c) and (d)), increasing � leads to a decrease of χe, which should be in
contrast to that observed in figure 3. More interesting results are those in figure 4(b), in which
a large enhancement of χe is again found [15, 28], and with increasing �, the enhancement
peak decreases accompanied by the shift to small volume fractions due to the dependence of
pc on �.

In order to show the influence of � on χe clearly, we plot χe/χ1 or χe/χ2 as a function of
� in figure 5. As can be seen from figure 5, for large conductivity contrast (σ1/σ2 or σ2/σ1),
the effective nonlinear response may exhibit monotonic increase, monotonic decrease and even
nonmonotonical behaviour, depending on the volume fractions. Moreover, for small �, χe

is generally slightly dependent on �, which indicates that a slight deviation of particle shape
from spherical does not affect χe significantly and the original EMA can be used as a first step
to estimate the effective response of the random mixtures with shape distribution. However,



4406 L Gao and Z Li

0

50

100

150

200

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

70

80

σ
1
=10

σ
2
=5000

e
1

 p=0.40
 p=0.60
 p=0.65
 p=0.70

σ
1
=5000

σ
2

=10

e
2

∆

 p=0.1
 p=0.2
 p=0.3
 p=0.4
 p=0.6

Figure 5. The effective nonlinear response as a function of � for various p.

for larger �, the effective nonlinear response is heavily dependent on �, the use of the original
EMA will become rough and the shape distribution must be taken into account by means of
our SDEMA.

5. Exact results in the dilute limit

In this section, we discuss the effective nonlinear response of a dilute suspension of nonlinear
randomly oriented ellipsoidal particles with shape distribution embedded in a linear medium.
In the dilute limit, the average of the mean fourth power of the linear local field within the
ellipsoidal particles of component 1 can first be calculated according to the rule

〈 f (θ, φ)〉 = 1

4π

∫ 2π

0

∫ π

0
f (θ, φ) sin θ dθ dφ, (24)

and is found to be

〈E4〉1

E4
0

= 1

15
[3β4

x + 3β4
y + 3β4

z + 2β2
x β

2
y + 2β2

yβ
2
z + 2β2

z β
2
x ], (25)

where β j = σ2/[L jσ1 + (1 − L j )σ2] ( j = x, y, z).



Effective medium approximation for two-component nonlinear composites with shape distribution 4407

0.0 0.2 0.4 0.6 0.8 1.0
10-1

100

0.0 0.2 0.4 0.6 0.8 1.0
10-1

100

101

102

SDEMA

p=0.05

e
1

∆

Exact Results

σ
1
/σ

2
=0.1

σ
1
/σ

2
=0.001

σ
1
/σ

2
=0.01

∆

Figure 6. χe/χ1 via � in the dilute limit p = 0.05. (a) Results from SDEMA and (b) exact results
from equation (26).

If we choose χ2 to be zero, from symmetry considerations, the effective nonlinear response
of the composites with a shape variance distribution can be expressed as

χe = pχ1

∫ ∫
P(Lx , L y)

〈E4〉1

E4
0

dLx dL y

= 2

5�2
pχ1

∫ 1
3 (1+2�)

1
3 (1−�)

∫ 1
3 (2+�)−Lx

1
3 (1−�)

(3β2
x + β2

y + β2
z )β

2
x dLx dL y. (26)

Equation (26) does not require the decoupling treatment and thus represents an exact formula
to calculate the effective nonlinear response χe.

In figure 6, we plot χe/χ1 as a function of � in the dilute volume fraction p = 0.05.
The predictions of the shape variance dependence of the effective nonlinear response given by
an exact expression equation (26) are quite similar to those by our SDEMA, i.e. both of them
yield the monotonic increase with �. However, by using the exact expression, we obtain a
larger magnitude of the effective nonlinear response than those obtained from SDEMA. The
reason is that the decoupling approximation 〈E4〉i ≈ 〈E2〉2

i has been adopted in SDEMA,
which gives the rigorous lower bounds of the exact results.

6. Conclusions and discussions

In this paper, based on the self-consistent condition of zero net polarization and mean field
approximation, we have formulated SDEMA to study the effective linear and nonlinear
responses of two-component nonlinear composites with shape distribution. We have obtained
the knowledge that, in C/I and S/C limits, the percolation thresholds pc and qc are significantly
dependent on the shape variance parameter, while the critical exponents, which describe the
vanishing (or divergence) of σe and χe near pc (or qc), are unchanged with increasing �.
The dependence of the percolation thresholds on � suggests that the percolating system can
be formed by adjusting the shape distribution of the components. Furthermore, we show that,
for the finite-conductivity ratio h = σ1/σ2, the effective nonlinear response can be enlarged
throughout the adjustment of �, and thus provides an alternative freedom to achieve large
enhancement of the effective nonlinear response.
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Here we add a few comments. In order to check the validity of our SDEMA, we can take
a further step to extract the scaling forms of the effective nonlinear response in the vicinity of
the percolation threshold and small h, and to compare it with a general scaling theory [27, 29].
Our method is applied to nonlinear transport properties of conducting composites of zero
frequency. For dielectric composites with relaxation, the dielectric loss becomes important.
With the spectral representation theory [30], we can derive the spectral density function to
investigate the effective nonlinear optical properties. In this connection, both the collective
phenomena and percolation effects will take place. For strongly nonlinear composites with
shape distribution, it would also be of great interest to investigate the critical behaviour and
scaling forms of the effective strongly nonlinear coefficient. More recently, we note an
experimental work [31], in which the effect of particle shape distribution on the surface plasmon
resonance of Ag/SiO2 nanocomposite thin films was reported. By using the theoretical formula
for the effective linear dielectric constant in our previous work [32], in which the Maxwell-
Garnett approximation and EMA with shape distribution were derived, they accounted quite
faithfully for inhomogeneous broadening of the plasmon band of the nanocomposite films.
The effect of shape distribution on the effective nonlinear response shown here should be
compared to systematic experiments on the nonlinear composites, and we hope our analysis
may help to stimulate an experimental investigation of the composite media with shape variance
distribution.
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